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Single-case designs allow for the examination of inter-
vention effects for either a single participant or a single 
case (e.g., one class of students with data collected at the 
classroom level). During a single-case study, data are col-
lected at multiple points over time, allowing for the in-
spection of intervention effects over time. This research 
design typically includes a baseline phase, in which data 
are collected prior to the implementation of the interven-
tion, and an intervention phase. Additional designs allow 
for the removal of the intervention, the reintroduction of 
the intervention, and the maintenance of the intervention. 
Furthermore, several cases can be examined together in a 
multiple-baseline design. This design can be used to study 
multiple participants, multiple settings, or multiple be-
haviors and is recommended to have a minimum of three 
(Barlow & Hersen, 1984) or four baselines (Kazdin & 
Kopel, 1975). A graphical display of a multiple-baseline 
design is provided in Figure 1. The figure is composed 
of a separate line graph for each of the 4 participants: 
Marie, Claire, Cody, and Chloe. For each participant, the 
outcome (minutes reading) is graphed across time, with a 
vertical line separating the baseline phase from the inter-
vention phase. Note that the intervention begins at a dif-
ferent point in time for each participant, which produces 
baselines of different lengths (or multiple baselines).

Single-case designs, such as multiple-baseline designs, 
offer several advantages over group designs. Single-case 
designs allow researchers to investigate intervention ef-
fects at the individual level rather than strictly at the group 
level. This provides researchers with more information 

about the intervention effects, because variation in indi-
vidual effects is lost or obscured in the average effects 
reported in group-design studies (Barlow & Hersen, 1984; 
Morgan & Morgan, 2001). In addition, it allows for ex-
amination of the intervention and its effects over time, 
since there are multiple data points, rather than a single 
score for each participant. Because of the nature of the 
design, it is also particularly well suited for populations 
with low prevalence rates, since large samples are not re-
quired. Furthermore, single-case and multiple-baseline 
studies allow researchers to be responsive to the needs of 
the participant(s), because data are collected at multiple 
points; therefore, if patterns emerge such that the inter-
vention is not effective, it can be modified. Finally, these 
designs reduce the gap between research and practice by 
allowing practitioners to implement research in their cur-
rent settings.

Among single-case designs, the multiple-baseline 
design is often preferred, because the staggering of the 
intervention (see Figure 1) makes it difficult to attribute 
changes to maturation or history (i.e., an event that just 
happened to coincide with the intervention). This strength-
ens the internal validity without requiring the researcher 
to remove the treatment (Barlow & Hersen, 1984). The 
utility of multiple-baseline designs has been well estab-
lished in a variety of fields within psychology and educa-
tion, including school psychology (Skinner, 2004; Van den 
Noortgate & Onghena, 2003a), special education (Swan-
son & Sachse-Lee, 2000), counseling (Sharpley, 1981), 
and reading (Neuman & McCormick, 1995). A search of 
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tion of students with disabilities for special education ser-
vices creates an increased need to evaluate the effective-
ness of interventions over time and at the individual level. 
For example, an essential aspect of mathematics RTI is 
the use of individual students’ performance data to make 
crucial tiered instructional decisions regarding how to 
best improve mathematical learning outcomes (Allsopp, 
McHatton, Ray, & Farmer, 2010). Both for practitioners 
that need to evaluate intervention effectiveness at the in-
dividual level and for researchers committed to the belief 
that interventions and their effects will be more fully un-
derstood if they are studied at the individual level, it is 
critical to understand the quality of inferences made about 
individual treatment effects.

Need for Confidence Intervals of  
Individual Treatment Effects

An individual treatment effect (T ) is generally defined 
as the difference between what would be observed for the 
individual under the treatment condition (Yt) and what 
would be observed for that individual under the control 
condition (Yc); therefore, the treatment effect is the dif-
ference between two potential responses: T  Yt  Yc 
(Gadbury & Iyer, 2000; Holland, 1986; Rubin, 1974). The 
inability to observe the same participant at the same time 
under both treatment and control conditions is generally 
referred to as the fundamental problem of causal infer-
ence. To overcome this problem, assumptions have to be 
made, and treatment effect inferences become uncertain 
(Holland, 1986).

In the context of single-case research, the individual 
treatment effect can be defined as the difference between 
what is observed during treatment for a participant and 
what would have been observed for that participant had no 
intervention taken place. Unfortunately, we do not know 
exactly what would have been observed if we had not in-
tervened. Instead, we make assumptions about how the 
outcome changes with time and then use these assump-
tions along with baseline observations to make projec-
tions about what would have happened had we not inter-
vened. Therefore, any estimate of the intervention effect 
is done with some uncertainty, which, to some extent, is 
tied to the amount of unexplained variation (or instabil-
ity) in the baseline observations. To reduce uncertainty, 
researchers often design their single-case studies in ways 
that minimize the variation in baseline observations (e.g., 
making each observation in the same setting), but even 
with such efforts, some unexplained variation remains. 
Consequently, when researchers focus on individual treat-
ment effects, they should not only provide point estimates 
of the individual effects, but should also provide measures 
of precision to index the uncertainty in these estimates. 
The American Psychological Association (2010) strongly 
recommends the reporting of confidence intervals for es-
timates like treatment effects, because they provide infor-
mation on both location and precision.

Although the creation of confidence intervals for indi-
vidual treatment effects is desirable, not all of the analy-
ses that have been recommended and used with multiple-
baseline data can be used to create confidence intervals. 

the Web of Science database using “multiple baseline” 
produced 75 studies that were published in 2008. A survey 
of the first 20 studies showed that the number of baselines 
ranged from 3 to 10, with a median of 4, and the aver-
age number of observations in an individual’s time series 
ranged from 7 to 58, with a median of 24. These studies 
included interventions to improve academic achievement, 
social skills performance, communication skills, daily 
task completion, training procedures, and healthy living 
with students with disabilities, students who are at risk 
for school failure, adults in the workplace and college set-
tings, and patients with Alzheimer’s disease, thus indicat-
ing a broad use of this research design.

Furthermore, the current movement in education and 
psychology to use interventions within a response to in-
tervention (RTI) framework (Glover & DiPerna, 2007) for 
students who are struggling and to assist in the identifica-
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Figure 1. Graphical display of a multiple-baseline design. The 
outcome (minutes reading) is graphed across time (days) for each 
of the 4 participants. The staggered vertical line separates the 
baseline phases from the intervention phases. 
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1985; Huitema & McKean, 1998; Matyas & Greenwood, 
1997) and, therefore, the degree to which OLS estimates 
may be inappropriate.

Multilevel Modeling
Multilevel models have been suggested as an alterna-

tive method for analyzing multiple-baseline data (Nugent, 
1996; Shadish & Rindskopf, 2007; Van den Noortgate 
& Onghena, 2003a, 2003b, 2007). The first level of the 
multi level model can be defined in a manner that mirrors 
the OLS regression model:

 yij  0j  1j phase  eij, (2)

where yij is the observed value at the ith point in time for 
the jth participant; phase is a dummy coded variable (0, 
baseline; 1, treatment); 0j is the baseline mean for the jth 
participant; 1j

 is the difference in means between base-
line and treatment phases for the jth participant (i.e., the 
jth participant’s treatment effect); and eij is error at the ith 
point in time for the jth participant, which accounts for 
within-phase variation around the phase mean. The errors 
for the jth participant could be assumed to be independent 
with a variance of 2 or could be assumed to have a more 
complex covariance structure, such as an autoregressive 
structure, which would allow the errors that were closer 
together in time to be more similar. As with OLS, the 
first level of the multilevel model (Equation 2) could be 
expanded to accommodate trends in the phases (Van den 
Noortgate & Onghena, 2003b).

The second level of the multilevel model can be defined 
to account for variation in participants’ baseline levels and 
variation in the participants’ treatment effects:

 0j  00  u0j, (3)

 1j  10  u1j, (4)

where 00 is the average baseline level and 10 is the aver-
age treatment effect. The error u0j indicates how far the 
jth participant’s baseline level is from the average baseline 
level and is assumed to have a mean of 0 and a variance of 

00. The u1j error is the discrepancy between the jth par-
ticipant’s treatment effect and the average treatment effect 
and is assumed to have a mean of 0 and a variance of 11.

Multilevel modeling leads to three different types of 
parameter estimates. First, there are variance components, 
such as the between-participants variance in baseline lev-
els (i.e., 00) and the between-participants variance in 
treatment effects (i.e., 11). Second, there are fixed effects, 
which provide estimates of the average baseline level (i.e., 

00) and the average treatment effect (i.e., 10). Finally, 
there are estimates of the random effects, which provide 
the regression coefficients for each participant. More spe-
cifically, 0j is the baseline level for the jth participant, 
and 1j is the treatment effect for the jth participant.

Multilevel-Modeling Estimates  
of Individual Effects

The 1j estimates from the multilevel model estimate 
the same individual treatment effect parameters that are 
estimated through OLS regression, but it is expected that 

Graphical displays coupled with visual analyses are 
widely advocated because of the clarity with which they 
communicate the observed data (Ferron & Jones, 2006; 
Parsonson & Baer, 1992), but they do not result in confi-
dence intervals of individual treatment effects. Similarly, 
randomization tests, which are recommended because of 
their ability to control the Type I error rate (Edgington, 
1980; Ferron & Sentovich, 2002; Koehler & Levin, 1998), 
also fail to provide a mechanism for creating confidence 
intervals for individual effects. Regression-based ap-
proaches, however, can provide confidence intervals for 
individual treatment effect estimates. Time series analysis 
provides one option, but these analyses are generally not 
considered viable for series with less than 50 observations 
(Box, Jenkins, & Reinsel, 1994). We will focus on ordi-
nary least squares (OLS) regression and multilevel model-
ing, both of which have been recommended for use with 
relatively short series.

OLS Regression
The simplest estimate of an individual treatment ef-

fect is obtained by taking the mean of the treatment phase 
observations for a participant and subtracting the mean 
of the baseline phase observations for that participant. 
These means are the most common statistics reported in 
multiple-baseline studies (Ferron & Jones, 2002), and a 
confidence interval around the mean difference can be ob-
tained by analyzing the interrupted time series data from 
the individual using the following regression model:

 yi  0  1 phase  ei, (1)

where yi is the observed value at the ith point in time, 
phase is a dummy coded variable (0, baseline; 1, treat-
ment), 0 is the baseline mean, 1 is the difference in 
means between baseline and treatment phases (i.e., the 
individual treatment effect), and ei is error at the ith point 
in time, which accounts for within-phase variation around 
the phase mean.

The regression model can be adapted to accommodate 
trends in the phases (e.g., Center, Skiba, & Casey, 1985; 
Huitema & McKean, 2000) and would typically be esti-
mated using OLS methods. The use of OLS regression 
for analyzing multiple-baseline data has been advocated 
(Huitema & McKean, 1998), but the use of OLS regres-
sion methods has also raised concerns, because the errors 
in the model are assumed to be independent. Many have 
argued that errors closer in time may be more similar to 
each other than independently selected errors, and, there-
fore, the errors may be positively autocorrelated instead of 
independent (Kratochwill et al., 1974; Matyas & Green-
wood, 1997). Furthermore, positive autocorrelation im-
pacts the statistical inferences such that there is a greater 
chance of Type I errors (Greenwood & Matyas, 1990; 
Toothaker, Banz, Noble, Camp, & Davis, 1983), which 
in turn implies that 95% confidence intervals would con-
tain the actual effect less than 95% of the time. Although 
the negative effects of autocorrelation on statistical infer-
ences are not contended, there has been considerable de-
bate about the degree to which behavioral time series data 
are autocorrelated (Busk & Marascuilo, 1988; Huitema, 
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dency (or autocorrelation). The estimation of autocorrela-
tion has consequences for the SE and, thus, the width of 
the confidence intervals. Finally, how the degrees of free-
dom are estimated impacts the critical t value and, thus, 
the width of the confidence interval. Although a variety of 
degrees of freedom estimates can be utilized in both OLS 
and multilevel-modeling frameworks, applied researchers 
typically select among the degrees of freedom methods 
that are easily accessible in standard statistical software 
(e.g., SAS, SPSS). The choices readily available differ be-
tween the procedures for OLS estimation (e.g., the REG 
procedure in SAS) and the procedures for multilevel mod-
eling (e.g., the MIXED procedure in SAS).

For the OLS model shown in Equation 1, the degrees of 
freedom are typically computed as

 dfOLS  n  2, (6)

where n is the number of observations in the individual’s 
time series. In multilevel modeling, there are a variety of 
methods to estimate the degrees of freedom that have been 
programmed as options for those using SAS. The specific 
options include the containment, residual, between–
within, Satterthwaite, and Kenward–Roger methods. We 
will discuss each of these methods as they apply to esti-
mating the degrees of freedom for the individual treatment 
effects (i.e., the random effects) from the model defined 
in Equations 2–4 and further specified in the SAS pro-
gramming lines provided in the Appendix. For more gen-
eral and detailed descriptions of these degrees of freedom 
methods, see SAS Institute (2004); Schaalje, McBride, 
and Fellingham (2001); and Kenward and Roger (1997).

The default method when using the MIXED procedure 
in SAS, which is known as the containment method, varies 
its computation method depending on the model speci-
fied. For the model shown in Equations 2–4 and specified 
in the programming lines in the Appendix, the degrees 
of freedom for the individual treatment effects (i.e., the 
random effects) are estimated as

 dfcontainment  n2(n1  2), (7)

where n2 is the number of participants and n1 is the number 
of observations in each participant’s time series. An alter-
native is the residual method, which for the model speci-
fied in Equations 2–4 and the Appendix simplifies to

 dfresidual  (n2 * n1)  1. (8)

Another option is the between–within option, which 
generally partitions the residual degrees of freedom into 
between- participants and within-participants portions. 
For the individual treatment effects of the model speci-
fied in Equations 2–4 and the Appendix, all of the residual 
degrees of freedom are given to the within-participants 
portion, and therefore, the degrees of freedom using the 
between–within method turn out to be the same as the 
residual degrees of freedom for this application.

These relatively simple methods for estimating the de-
grees of freedom tend to overestimate the degrees of free-
dom when there is a complex covariance structure, such 
as autocorrelated errors, so other degrees of freedom es-

the multilevel-modeling estimates will differ from the 
OLS estimates. OLS estimates of an individual effect are 
based entirely on the data from the individual. Multilevel-
 modeling estimates, however, are empirical Bayes esti-
mates, which depend not only on the data from the indi-
vidual, but also on the data from the other participants. 
Empirical Bayes estimates are obtained by creating a 
weighted average of an estimate that is based on informa-
tion only from the individual and an estimate that is based 
on the average of all of the participants’ data (Raudenbush 
& Bryk, 2002). When we have a very reliable estimate 
based on the information from the individual, the average 
estimate is given very little weight. Under these circum-
stances, the empirical Bayes estimates would be expected 
to be very similar to the OLS estimates. As series lengths 
become shorter and the time series data more variable, the 
estimates based on the data from one participant become 
less reliable. As these estimates become less reliable, more 
weight is given to the average estimate.

Empirical Bayes estimates are expected to be biased 
(Raudenbush & Bryk, 2002), which means that if we could 
replicate the study many times for the same individual, the 
average of the estimates from these studies would not be 
expected to be the true individual treatment effect. This 
bias results because the estimate is not based solely on the 
individual’s data; rather, it is a weighted average of the esti-
mate based on the individual’s data and the estimate based 
on averaging all of the participants’ data. Although bias 
is problematic, there is an expectation that the process of 
using a weighted average will help to stabilize unreliable 
individual estimates. This should then lead to individual 
estimates that tend to be closer to the true individual ef-
fects than estimates that are based solely on the individual’s 
data (Raudenbush & Bryk, 2002). This expectation was 
examined in a simulation study of a traditional longitudinal 
design where the number of measurement occasions was 
varied from 7 to 13 and the number of participants was var-
ied from 25 to 250 (Candel & Winkens, 2003). Using the 
mean square error to index the closeness of the estimates to 
the true parameter values, Candel and Winkens found that 
empirical Bayes estimates outperformed OLS estimates 
for all sample sizes studied.

Multilevel-Modeling Confidence Intervals  
for Estimates of Individual Effects

There are reasons to expect not only that the point esti-
mates will differ, but also that the confidence intervals will 
differ between OLS and multilevel modeling. The same 
general approach of computing the confidence interval for 
an individual effect is used in these two methods:

 CI    tcrit * SE, (5)

where  is the individual effect estimate, tcrit is the criti-
cal value from the t distribution corresponding to the de-
sired level of confidence, and SE is the standard error. As 
was previously mentioned, the treatment effect estimates 
( ) will vary between OLS and multilevel modeling. In 
addition, OLS assumes that the errors are independent, 
whereas multilevel modeling can allow for serial depen-
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were also examined, and when the number of participants 
was small (N  30), the bias was substantial. For example, 
Murphy and Pituch found that when the model was cor-
rectly specified; the number of participants was 30; the 
series length was 5; and the autoregressive and moving 
average parameters were .5 and .3, respectively; the rela-
tive bias in the intercept variance was .20 and the relative 
bias in the slope variance was .17.

Research on the estimation of average effects, however, 
has revealed that it is possible to obtain accurate results 
even when sample sizes are small. In a study of multiple-
baseline designs, Ferron et al. (2009) found that the fixed 
effect estimate of the average treatment effect was unbi-
ased for all sample sizes studied. In addition, it was shown 
that accurate confidence intervals could be obtained for 
the average treatment effect if an autocorrelated error 
structure was specified and either the Kenward–Roger or 
Satterthwaite method was used to estimate the degrees 
of freedom. Under these circumstances the proportion of 
times that the confidence interval contained the parameter 
value for 95% confidence intervals ranged from .935 to 
.965 (i.e., the coverage estimates were close to the nomi-
nal value).

The value of using the Kenward–Roger method to es-
timate degrees of freedom for fixed effect inferences has 
also been considered more generally in the methodologi-
cal literature on the application of multilevel models to 
repeated measures data. This method is theoretically the 
most appropriate when sample size is small and there is 
a complex covariance structure, but exactly how well it 
will work and the degree to which it will provide superior 
performance has not been derived mathematically. Con-
sequently, its performance has been examined in Monte 
Carlo studies (Fouladi & Shieh, 2004; Gomez, Schaalje, 
& Fellingham, 2005; Kenward & Roger, 1997; Kowal-
chuk, Keselman, Algina, & Wolfinger, 2004; Schaalje 
et al., 2001). In these studies, designs in which the partici-
pants came from two to five groups and were repeatedly 
measured from three to five times were considered. The 
number of participants ranged from 9 to 45 across these 
simulation studies, and even with these relatively small 
sample sizes, accurate hypothesis tests (and confidence 
intervals) were obtained for most conditions. An excep-
tion was found by Gomez et al. (2005) when they exam-
ined a three-group design with 3 participants per group 
in which each participant was measured at three points in 
time. When data were generated and analyzed assuming 
compound symmetry, the estimated Type I error rate was 
.0525 (   .05), but when the data were generated and 
analyzed assuming a first-order autoregressive with ran-
dom effects model, the Type I error rate for the treatment 
effect was estimated to be .1165 (   .05).

A general conclusion that can be drawn from the stud-
ies in which the functioning of multilevel modeling with 
small sample sizes was examined is that the degree to 
which multilevel modeling functions appropriately de-
pends on the type of parameter being estimated. When 
the focus is on a variance component (e.g., the variance 
in treatment effects), multilevel modeling has problems 

timation methods have been developed. The Satter thwaite 
(1941) method uses the variance–covariance matrix of the 
observed time series to approximate the degrees of free-
dom using a generalization of the procedure described by 
Fai and Cornelius (1996), which builds on the work of Sat-
terthwaite. Unlike the containment, between–within, and 
residual methods, when the Satterthwaite method is used 
for the model specified in Equations 2–4 and the Appen-
dix, it typically produces a different degrees of freedom 
estimate for each individual treatment effect. Note that 
this degrees of freedom method is the one used by the 
SPSS MIXED procedure.

The Kenward–Roger method (Kenward & Roger, 1997) 
is an extension of the Satterthwaite method. More spe-
cifically, Satterthwaite-type degrees of freedom are com-
puted, but the computation is made after the estimated 
variance–covariance matrix of fixed and random effects 
is inflated to adjust for bias. The method for inflating the 
variance–covariance matrix of fixed and random effects 
is described by Harville and Jeske (1992) and by Prasad 
and Rao (1990). With some data sets, the method leads to 
no change in the estimated variance–covariance matrix of 
fixed and random effects, and therefore, the Satterhwaite 
and Kenward–Roger methods may return the same degrees 
of freedom estimates for the individual treatment effects. 
When sample sizes are very large, the differences among 
the degrees of freedom methods are expected to have neg-
ligible effects on the confidence intervals, but as sample 
size gets smaller, the differences are expected to result in 
meaningful differences in the confidence intervals.

Research on the Functioning of Multilevel 
Modeling With Multiple-Baseline Data

Interestingly, research into the statistical functioning of 
multilevel models with multiple-baseline data has been 
focused on the variance components and the average ef-
fects, and the individual effects have not been examined. 
Ferron, Bell, Hess, Rendina-Gobioff, and Hibbard (2009) 
conducted a Monte Carlo simulation study that looked at 
multiple-baseline studies having 4, 6, or 8 participants in 
which series lengths of 10, 20, or 30 observations were 
used. They found that the variance components were 
substantially biased. More specifically, using restricted 
maximum- likelihood estimation, they found that as the 
number of participants went from 4 to 6 to 8, the average 
relative bias estimates for the variance in the treatment 
effect went from 0.34 to 0.25 to 0.21, which indicates a 
substantial bias even in the largest sample size examined.

These results were not too surprising, given other re-
search in which estimation of the variance components 
in multilevel models for more traditional longitudinal de-
signs was examined. Monte Carlo studies of growth curve 
models having as few as 30 participants and series lengths 
of 4 or 8 (Kwok, West, & Green, 2007), and series lengths 
of 3–12 (Ferron, Dailey, & Yi, 2002) have all shown sub-
stantial biases in the variance components when the model 
was misspecified. Furthermore, in two of these studies 
(Kwok et al., 2007; Murphy & Pituch, 2009) biases in the 
variance components under correct model specification 
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8 participants, where each would have a separate baseline, would 
be 9. On the basis of these considerations, a series length of 10 
was established as the minimum for the study, and although series 
lengths of over 30 are sometimes used in practice, we expected that 
statistical theory and the results of our study would allow us to gen-
eralize to longer series lengths.

For each simulated study, the implementation of treatment was 
staggered, such that each successive participant had a baseline that 
was one observation longer than that of the previous participant 
when the series length was 10, two observations longer when the 
series length was 20, and three observations longer when the series 
length was 30. As a result, the length of the baseline phases varied 
among participants within studies but also varied across studies that 
had different series lengths and numbers of participants. The design 
with 4 participants and series lengths of 20 is illustrated in Figure 1. 
When the number of participants was 4 and the series length was 
30, the baseline lengths were at their longest, with values of 10, 13, 
16, and 19 for the 4 participants. When the number of participants 
was 8 and the series length was 10, the baseline lengths were at their 
shortest, with values of 1–8 for the 8 participants.

The data were generated on the basis of the multilevel model 
shown in Equations 2–4. At the first level, an outcome at the ith 
time for the jth participant ( yij) was modeled as a linear function of 
a single predictor, phase,

 yij  0j  1j phase eij, (9)

where phase was a dichotomous variable indicating whether the 
observation was from the baseline or treatment phase, 0j was the 
average level of the outcome during baseline for the jth participant, 
and 1j was the treatment effect for the jth participant. This within-
participants model was consistent with the model used by Ferron 
et al. (2009) in the reanalyses of four multiple-baseline studies and 
was consistent with the multilevel-modeling application presented 
by Van den Noortgate and Onghena (2003a), which was focused on 
a reversal design that was replicated across 6 participants. Further-
more, because it was the most basic interrupted time-series model 
(e.g., there were no trends, changes in trends, or seasonal effects), 
it appeared to be the most appropriate model for an initial study 
into the multilevel modeling of multiple-baseline data. If accurate 
confidence intervals of individual effects could not be obtained in 
this model, one would not expect them to be obtained from more 
complex models. Errors for the within-participants model (eij) were 
generated using the ARMASIM function in SAS Version 9.1 (SAS 
Institute, 2005), with a variance ( 2) of 1.0 and an autocorrelation 
( ) of 0, .1, .2, .3, or .4. These autocorrelation values were selected 
to cover the range expected in behavioral studies and were based on 
a review of studies conducted to index the degree to which errors 
in behavioral data are autocorrelated (Busk & Marascuilo, 1988; 
Huitema, 1985; Matyas & Greenwood, 1997).

At the second level, baseline levels (i.e., intercepts) and treatment 
effects (i.e., shifts) of the first-level model were allowed to vary 
randomly,

 0j  00  u0j, (10)

 1j  10  u1j, (11)

where 00 was the average baseline level and 10 was the average 
treatment effect, each set to a value of 1.0. Level 2 errors were gener-
ated from a normal distribution using the RANNOR random number 
generator in SAS Version 9.1 (SAS Institute, 2005). The variance of 
u0j ( 00) was equal to 0.1 or 0.5, the variance of u1j ( 11) was equal to 
0.1 or 0.5, and the covariance between u0j and u1j was 0.

The variances of the Level 2 errors were chosen such that the ma-
jority of the variance would be in the Level 1 errors (recall 2  1.0). 
Substantial Level 1 variation makes treatment effects more difficult 
to discern visually and thus motivates statistical analyses. A larger 
variance component at Level 1 was also consistent with the four 
reanalyses of recently published multiple-baseline studies that were 
conducted using multilevel models (Ferron et al., 2009) and with 

when the sample size is small, but when the focus is on a 
fixed effect (e.g., the average treatment effect), multilevel 
modeling often performs well even with small sample 
sizes, as long as the error structure is correctly specified 
and the degrees of freedom are appropriately estimated. 
Given the inability to mathematically derive performance 
under small sample size conditions, and the variation in 
performance when focus shifts from variance components 
to fixed effects, it is unclear how multilevel modeling will 
perform when the focus is on the individual treatment ef-
fect estimates.

Purpose
An argument has been made for the importance of es-

timating individual treatment effects and the correspond-
ing confidence intervals from multiple-baseline data. 
Traditional OLS methods can be used to do this but are 
known to create inaccurate confidence intervals when er-
rors are autocorrelated. Multilevel modeling provides an 
alternative approach, which allows the autocorrelation to 
be modeled. The purpose of this study was to examine 
the accuracy of multilevel-modeling estimates of indi-
vidual treatment effects and their confidence intervals. 
More specifically, the goal was to examine bias and vari-
ability (mean square error, MSe) in the empirical Bayes 
estimates and to examine the coverage and width of the 
corresponding confidence intervals, which were con-
structed using one of three different methods of estimat-
ing the degrees of freedom: the Kenward–Roger, the Sat-
terthwaite, or the containment method. These estimates 
were examined for conditions that varied in the number 
of participants, series length, the level of autocorrelation, 
variance among participants in initial level, and variance 
among participants in the treatment effect. To provide a 
comparison with these multilevel-modeling approaches, 
OLS estimates and confidence intervals were also ex-
amined by doing a separate analysis for each individual 
time series.

METHOD

Monte Carlo simulation methods were used to examine the 
multilevel- modeling estimates of individual effects and their con-
fidence intervals in the context of multiple-baseline studies. The 
number of simulated participants (or baselines) was 4, 6, or 8. These 
numbers were selected on the basis that multiple- baseline studies 
have been recommended to have at least four baselines (Kazdin & 
Kopel, 1975); consistency with the other simulation study of multi-
level modeling of multiple-baseline data (Ferron et al., 2009); and 
our survey of multiple-baseline studies published in 2008, which 
showed studies having from 3 to 10 baselines with a median of 4.

The series lengths were simulated to be 10, 20, or 30 observations. 
These values were also selected on the basis of multiple consider-
ations. In our survey, we found average series lengths that ranged 
from 7 to 58, with a median of 24, and in a meta-analysis of 85 
single-case studies, Swanson and Sachse-Lee (2000) found that 25 
studies had 11 treatment sessions, 37 studies had between 11 and 
29 treatment sessions, and 23 studies had 29 treatment sessions. 
In addition, the values of 10, 20, and 30 are consistent with the other 
simulation study of multilevel modeling of multiple-baseline data 
(Ferron et al., 2009). Moreover, we wanted to cross series length 
with the number of participants in the Monte Carlo design, and the 
minimum possible series length in a multiple-baseline design with 



936    FERRON, FARMER, AND OWENS

To verify that the simulation program was generating data consis-
tent with specifications, running the intended models, keeping track 
of the right values from the results, and correctly summarizing these 
values, the program was run for a small number of replications. The 
vectors produced at each stage of data generation were examined for 
consistency with the specifications, the output data sets generated by 
calls to the MIXED and REG procedures were examined to ensure 
that the intended models were being analyzed, and the summary data 
set in which results were accumulated was examined for accuracy by 
comparing it back to the output data sets.

RESULTS

Bias
The distribution of bias values for each method of esti-

mating individual treatment effects is illustrated in a box-
plot in Figure 2. As was expected, the bias values were 
close to 0 for the OLS method of estimating individual 
treatment effects, with an average bias value of 0.01 and a 
range of values from 0.01 to 0.09. Also as was expected, 
the empirical Bayes method of estimation led to biased 
estimates of the individual treatment effects with a mean 
of 0.24 and values ranging from 0.45 to 0.09. Recall 
that the value of the average treatment effect was 1.0, thus 
an average bias estimate of 0.24 represents 24% of the 
average parameter value, which is substantial.

Variation in bias of the individual treatment effects was 
explored by modeling bias with the main effects (series 
length, number of participants, variance in baseline lev-
els, variance in treatment effects, autocorrelation, and 

the multilevel-modeling application for a replicated ABAB design 
presented by Van den Noortgate and Onghena (2003a).

Crossing the two variance levels of u0j with the two variance lev-
els of u1j and the five levels of autocorrelation, a total of 20 data con-
ditions were examined for each of the nine combinations of sample 
size with series length. For each of these 180 conditions (20 * 9), 
1,000 data sets were simulated using SAS IML (SAS Institute, 
2005). The use of 1,000 replications leads to 4,000, 6,000, or 8,000 
individual effect estimates depending on whether the number of par-
ticipants was 4, 6, or 8. With 4,000 effect estimates, the SE would be 
.003 if the coverage was .95, and the SE would be even smaller for 
conditions with 6 or 8 participants.

Each data set was analyzed using a separate OLS analysis for each 
time series by using the REG procedure with a BY statement. The 
regression model, which was consistent with the model in Equa-
tion 1, provided an estimate of the baseline level and the individual 
treatment effect. The individual treatment effect, or shift in level 
that occurs with intervention, is the difference between the baseline 
mean and the intervention mean. Each data set was also analyzed 
using multilevel modeling with RML estimation via the MIXED 
procedure. The estimated multilevel model was consistent with data 
generation. For each participant, a baseline level was estimated as 
well as the treatment effect (i.e., the shift in the level that occurred 
with intervention). Estimates were also obtained for the autocor-
relation, variance within participants, variance in baseline levels, 
and variance in treatment effects. The empirical Bayes estimates, 
which are not part of the default output, were obtained following the 
procedure described by Van den Noortgate and Onghena (2003a). 
The specific programming lines that were used to estimate the multi-
level model and to obtain the empirical Bayes estimates of the in-
dividual effects, along with their confidence intervals, are shown in 
the Appendix.

Confidence intervals for the individual effects from the multi-
level models were obtained using three alternative approaches for 
estimating the degrees of freedom: the Kenward–Roger method, 
the Satterthwaite method, and the containment method. The re-
sidual and between–within methods were not included, because 
they provide the largest degrees of freedom estimates and are ex-
pected to overestimate the degrees of freedom in this context. The 
containment method is also expected to overestimate the degrees 
of freedom, although not by as much. It was included because it 
is the default method in the MIXED procedure and is therefore 
likely to be used in practice. By including the containment method 
as a comparison to the more complex Satterthwaite and Kenward–
Roger approaches, it is possible to address the practical question of 
whether the theoretical advantages of these more complex methods 
materialize to an extent that warrants moving from the more famil-
iar default approach.

For each of the 180 conditions, we obtained the estimates of the 
bias and MSe for each method of making point estimates of the indi-
vidual treatment effects and the coverage and width for each method 
of making the confidence intervals for the individual treatment ef-
fects. More formally,
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where 1jk is the estimated treatment effect for the jth participant 
from the kth simulated study, 1jk is the simulated treatment effect 
for the jth participant from the kth simulated study, n2 is the number 
of participants per simulated study, and
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where the symbols are defined as before. Coverage was computed as 
the proportion of 95% confidence intervals that contained 1jk, and 
width was computed as the average difference between the upper 
and lower limits of the 95% confidence intervals.
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Figure 2. Boxplots showing the distribution of bias estimates 
for each method of making point estimates of the individual 
treatment effects.
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ure 3). Although it is evident that the method of estima-
tion accounts for the majority of the variation in the bias 
values, as series length gets larger, the bias values for the 
empirical Bayes estimates become closer to 0. These re-
sults are consistent with statistical theory. As series length 
increases, the empirical Bayes estimates draw more heav-
ily on the data from the individual (and less heavily on 
the average estimate), thus making the empirical Bayes 
estimates closer to the OLS estimates.

MSe
The distribution of MSe estimates is shown in Figure 4 

for each method of creating the point estimates of the in-
dividual effects. The variation in the MSe estimates that 
was associated with each design effect is shown in the 
second column of Table 1. The MSe decreased with series 
length, increased with autocorrelation, and—as was theo-
retically expected—tended to be lower in empirical Bayes 
estimates than in OLS estimates. The interaction of series 
length and method can be seen in Figure 5. The difference 
in MSe between the empirical Bayes and OLS estimates is 
greatest when the series length is short and diminishes as 
the series length increases, which is expected because the 
empirical Bayes estimates get closer to the OLS estimates 
as the series length increases.

Although it was expected that the empirical Bayes es-
timates would be biased and would have a lower MSe, it 
was not clear prior to this study how large the bias or dif-
ference in MSe would be for multiple-baseline studies. 
With the observed bias in the estimate of the individual 
effect comes the concern that confidence intervals will 
not be accurate—because these intervals would be cre-
ated around a biased estimate. The extent to which the 
confidence intervals are accurate, the primary focus of 
this study—is examined next.

Confidence Interval Coverage
Figure 6 presents boxplots showing the distribution of 

coverage estimates (i.e., the proportion of times that the 
confidence interval contains the true individual treatment 
effect). The distribution of coverage estimates is shown 

method of estimating the individual treatment effect) and 
the two-way interactions involving the method used to 
estimate the individual treatment effects. The proportion 
of variability associated with each effect is shown in the 
first column of Table 1. Most of the variability in bias 
was associated with the method used for estimating the 
individual treatment effects, followed by the interaction 
between series length and method and the main effect for 
series length.

In order to explore these effects further, a line graph 
was created that modeled the bias values as a function of 
method, series length, and their interaction and that there-
fore shows 93% of the variance in bias estimates (Fig-

Table 1 
Eta-Squared ( 2) Values for Association of  

Design Factors With Outcomes 

Design Factor  Bias  MSe  Coverage  Width

Series length .037 .603 .012 .389
Number of participants .009 .016 .003 .004
Variance in baseline level .000 .002 .007 .006
Variance in treatment effect .006 .000 .009 .003
Autocorrelation .010 .220 .065 .064
Method .820 .077 .577 .267
Series length * method .073 .034 .110 .132
Number of participants * method .002 .009 .009 .032
Variance in baseline level * method .000 .002 .003 .002
Variance in treatment effect * method .013 .000 .022 .009
Autocorrelation * method .021 .019 .159 .048

 Total .990 .983 .976 .956

Note—For bias and MSe, the method is empirical Bayes or ordinary least 
squares (OLS), for coverage and width the method is containment, Satter-
thwaite, Kenward–Roger, or OLS.
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Figure 3. Line graph showing the estimated bias as a function 
of series length for each method of making point estimates of the 
individual treatment effects. OLS, ordinary least squares.
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As is shown in the third column of Table 1, most of the 
variation in coverage was associated with the method used 
to construct the confidence interval and its two-way inter-
actions with autocorrelation and series length. To further 
examine these effects, two line graphs were constructed. 
One shows the coverage rate as a function of the method 
used to construct the confidence interval and autocorrela-
tion, whereas the other shows the coverage rate as a func-
tion of the method used to construct the confidence inter-
val and series length. These graphs show the vast majority 
of the variation in the coverage estimates (the combined 

2 was .92 for these factors).
The coverage rates as a function of autocorrelation are 

shown in Figure 7. The interaction between the method 
used to construct the confidence interval and autocorre-
lation can readily be seen. The Kenward–Roger method 
maintained coverage very close to the nominal level, re-
gardless of the autocorrelation level. However, both the 
containment and OLS methods had coverage estimates 
that dropped further below the desired level as the auto-
correlation in the generated errors increased. The OLS 
method had the greatest decrease as autocorrelation in-
creased, moving from .953 to .834, which was expected, 
since OLS assumes independent errors.

The coverage for each method as a function of series 
length is shown in Figure 8. As series length increased, 
the Kenward–Roger method’s average coverage went from 
.963 when the series length was 10 to .953 when the series 
length was 30. For the Satterthwaite method, the average 
coverage stayed relatively constant from .920 when the 
series length was 10 to .921 when the series length was separately for each method of constructing the confi-

dence intervals for the individual treatment effects. With 
the OLS approach, the coverage estimates range from a 
high of .959 to a low of .809, with a mean of .899. Varia-
tion across conditions was expected for the OLS method, 
because the intervals can be shown to be accurate when 
there is no autocorrelation and, as was noted previously, 
are known to undercover (i.e., coverage less than .95) with 
positive autocorrelation (Greenwood & Matyas, 1990; 
Toothaker et al., 1983).

Coverage for the multilevel-modeling methods de-
pended on how the degrees of freedom were computed. 
Although it was not clear prior to the study how much 
the method of estimating the degrees of freedom would 
impact coverage, it was anticipated that if substantial dif-
ferences emerged, the Kenward–Roger and Satterthwaite 
methods would have higher coverage estimates than the 
containment (or default) method. This pattern did emerge, 
as can be seen in Figure 6. Of particular interest is the ac-
curacy that is obtained when the Kenward–Roger method 
was used for estimating the degrees of freedom. With this 
method, the average coverage estimate was very close 
to the nominal level of .95 (M  .958), and all 180 esti-
mates were relatively close to the nominal level (min  
.940, max  .977). Only multilevel modeling with the 
 Kenward–Roger approach to estimating degrees of free-
dom provided accurate confidence intervals across the 
range of conditions studied. The Satterthwaite method 
tended to undercover (M  .920), and the containment 
method tended to markedly undercover (M  .862).
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degrees of freedom method on the coverage. This can be 
attributed to the increase in degrees of freedom that oc-
curs for all methods as the series length increases. As the 
degrees of freedom increase, the differences in degrees of 
freedom will have less impact on coverage.

Confidence Interval Width
The boxplots illustrating the distribution of the interval 

widths for each method of constructing the confidence 
intervals for the individual treatment effects are presented 
in Figure 9. The interval widths were the smallest for the 
containment method of estimating the degrees of free-
dom (M  1.75). The Satterthwaite method of estimat-
ing the degrees of freedom and the OLS approach were 
relatively similar (M  2.18 and M  2.22, respectively), 
and the Kenward–Roger method yielded the largest inter-
val widths (M  3.15). Note that these observations are 
explainable in light of the coverage results. The methods 
that provided the smallest confidence intervals were the 
methods that were least accurate, because the intervals 
were not wide enough to contain the true treatment effect 
95% of the time.

The 2 for the factors effecting interval width are 
shown in the last column of Table 1. Most of the varia-
tion was related with the series length, followed by the 
method for constructing the confidence intervals and the 
interaction between series length and method. In order to 
explore these effects further, a line graph was created that 
modeled the interval widths as a function of series length 
(Figure 10). The graph indicates that although the con-
tainment method for estimating the degrees of freedom 
remains relatively stable regardless of the series length, 

30. The most pronounced effects for series length were 
seen for the containment method, the coverage of which 
increased from .820 when the series length was 10 to .894 
when the series length was 30. In general, it can be seen 
that as series length increases, there is less impact of the 
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Figure 6. Boxplots showing the distribution of coverage estimates for each method 
of computing the confidence intervals. OLS, ordinary least squares.
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DISCUSSION

This study was focused on a multilevel model in which 
the treatment effect was conceptualized as the difference 
in the level of response during intervention and the level 
of response during baseline. This model was used in the 
analysis presented by Van den Noortgate and Onghena 
(2003a) and in several reanalyses of multiple-baseline 
studies (Ferron et al., 2009). This model is also implied 
when researchers report the means of each phase and when 
meta-analyses are done in which the effect size is computed 
as the standardized difference between the treatment and 
baseline means (e.g., Busk & Serlin, 1992). Furthermore, 
rather than looking at the average treatment effects (Ferron 
et al., 2009), in this study, we expanded the research base 
by examining effects at the individual level.

Inferences about individual effects are important to 
practitioners who need to evaluate whether an individual 
responds to intervention and to researchers who focus on 
individuals, such as those who study populations with 
low prevalence rates. In contexts in which it is suspected 
that the errors may be autocorrelated (such as a multiple-
baseline design), multilevel modeling, which can accom-
modate complex error structures, is preferable to OLS. 
In this study, we found that when multilevel modeling is 
used, care must be taken in selecting a method for estimat-
ing degrees of freedom. The Kenward–Roger method of 
estimating the degrees of freedom is preferable to either 
the Satterthwaite or the containment method when mak-
ing individual treatment effect inferences from multiple-
baseline data, because it provided accurate confidence 
intervals, regardless of the number of participants, series 

the interval widths decrease slightly for the Satterthwaite 
method and OLS approach and greatly for the Kenward–
Roger method as series length increases. Therefore, the 
interval widths become more similar as series length 
increases.
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Figure 9. Boxplots showing the distribution of interval width estimates for each 
method of computing the confidence intervals. OLS, ordinary least squares.
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variance matrix is nonlinear; therefore, future researchers 
should also consider the functioning of this new approxi-
mation for multiple-baseline studies.

Finally, some applications will involve more partici-
pants and longer series lengths. In these cases, both sta-
tistical theory and the pattern of results obtained from 
this study lead us to conclude that multilevel modeling 
with the Kenward–Roger method of estimating degrees 
of freedom will continue to provide accurate confidence 
intervals for individual treatment effects. In addition, as 
series length increases, the width of the confidence in-
tervals will get smaller, thereby giving more precise es-
timates of the treatment effect. Consider an effect of 4.7 
times the baseline standard deviation, which was the aver-
age effect size in a review of 150 single-case studies of 
school-based interventions (Gresham et al., 2004). On the 
basis of the Kenward–Roger results shown in Figure 9, a 
series length of 10 would yield a confidence interval from 
about  2.3–7.1, but a series length of 30 would lead to a 
confidence interval of about 3.7–5.7, and a series length 
of greater than 30 would provide an even tighter interval. 
In summation, results from this study and statistical the-
ory suggest that researchers conducting multiple-baseline 
studies with multilevel modeling should use the Kenward–
Roger method for estimating degrees of freedom.
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APPENDIX 
SAS Programming Lines for Estimating Individual Effects and Their Confidence Intervals

The following MIXED procedure programming lines were used to obtain empirical Bayes estimates of the 
individual treatment effects and their confidence intervals. Following Van den Noortgate and Onghena (2003a), 
the dummy coded treatment variable ( phase) is included in the random statement but not in the model statement. 
With this specification, the random effects become the empirical Bayes estimates of the treatment effects as op-
posed to errors that need to be added to the average treatment effect. The Kenward–Roger degrees of freedom are 
requested by the option ddfm kr. Other degrees of freedom methods were obtained by altering this option.

proc mixed data=j2 covtest;
 class person;
 model y = / solution ddfm=kr;
 repeated / type = ar(1) sub=person;
 random intercept phase / sub=person solution cl;
 ods output solutionR = eb1 (keep = estimate lower upper effect);
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